Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence

Arslan Chaudry*, Puneet K Dokania*, Ajanthan Thalaiyasingam* and Philip H S Torr

🏢European Conference on Computer Vision (ECCV), pages 532-547, September 2018



Abstract. Incremental learning (IL) has received a lot of attention recently, however, the literature lacks a precise problem definition, proper evaluation settings, and metrics tailored specifically for the IL problem. One of the main objectives of this work is to fill these gaps so as to provide a common ground for better understanding of IL. The main challenge for an IL algorithm is to update the classifier whilst preserving existing knowledge. We observe that, in addition to forgetting, a known issue while preserving knowledge, IL also suffers from a problem we call intransigence, its inability to update knowledge. We introduce two metrics to quantify forgetting and intransigence that allow us to understand, analyse, and gain better insights into the behaviour of IL algorithms. Furthermore, we present RWalk, a generalization of EWC++ (our efficient version of EWC [6]) and Path Integral [25] with a theoretically grounded KL-divergence based perspective. We provide a thorough analysis of various IL algorithms on MNIST and CIFAR-100 datasets. In these experiments, RWalk obtains superior results in terms of accuracy, and also provides a better trade-off for forgetting and intransigence.

Download the full paper

View all research publications